WORLDWIDE PERSPECTIVES ON GEOGRAPHICAL INDICATIONS International conference for researchers, policy makers and practitioners

INNOVATIONS AND TRADITIONS FOR SUSTAINABILITY

Gaia Meoni, Ph.D - CERM, Dipartimento di Chimica «Ugo Schiff», Università degli Studi di Firenze

Harnessing NMR metabolomic fingerprinting for enhanced geographical identification and quality of

FOOD: A COMPLEX MATRIX

Analytical tecniques for food analyses

✓ Security
✓ Quality
✓ Authenticity

Common analyses :

- Time consuming (low speed of detection, sample pretreatment)
- Sample distruction
- High volume/quantity of sample and solvents
- Targeted for few molecules

Fingerprinting analyses:

- Fast and minimal or no sample pre-treatment
- Non-destructive
- Untargeted

- ✓ Highly reproducible
- ✓ Quantitative analysis
- ✓ Fast analysis
- ✓ Not disruptive
- ✓ Simple and minimal sample preparation
- ✓ Sensitivity (detection limit in the order of µM)

methionine

eographical origin: the milk case

97.6

12.0

³The diagonal of the confusion matrix reports the sensitivity (%) for the classification of each animal. Overall predictive accuracy = 93,1%.

²Period 1 refers to 3 and 1 d before the beginning of grazing and 2 and

3 d after the beginning of grazing; period 2 refers to 7, 10, and 14 d

after the beginning of grazing.

2.4

87.1

- 93.1% accuracy distinguishing pre- and post-grazing milk samples.
- Hippurate: A robust marker for pasture-based milk.
- Grazing induces significant metabolic changes in milk.
- $^{1}\mathrm{H}$ NMR is a powerful tool for food traceability and authenticity.
- Potential application in premium dairy product verification (e.g., PDO cheeses).

♠ OMICS: A Journal of Integrative Biology > Vol. 24, No. 7

Research Article | 6 NO ACCESS | Published Online: 6 July 2020

2020

8 6

0

a

3

2

1 0

-1

-2

-3

3

2 1

0

-1

-2 -3 -4

N-acetylcabomotale.

ophosphocholi

ore creation puration of the method

Nuclear Magnetic Resonance-Based Metabolomic Comparison of Breast Milk and Organic and Traditional Formula Milk Brands for Infants and Toddlers

Authors: Gala Meoni, Leonardo Tenori, and Claudio Luchinat 🖂 AUTHORS INFO & AFFILIATIONS

Publication: OMECS: A Journal of Integrative Biology • https://doi.org/10.1089/omi.2019.0125

1) Org. Vs conv. FMs CV OPLS-DS

Confusion matrices of OPLS-DA models of organic and nonorganic infant FM								
FM CPMG model			FM diffusion-edited model					
æ	NO-ORG	ORG	96	NO-ORG	ORG			
NO-ORG	66.7	33.3	NO-ORG	80	20			
Overall predictive accuracy: 78%			Overall predictive accuracy: 61.6%					

5 FMs CV OPLS-DS 2)

%	С	Α	E	D	B
C	20	0	0	0	80
A	0	100	0	0	0
E	0	0	100	0	0
D	0	0	0	100	0
B	70	0	0	0	30
	Over	all predicti	ve accuracy	: 70%	

uality and composition: the milk case Infants valine glutamate methionine glutamine glucose alanine 5×10° $1.25 - 10^2$ 2.6 - 10 8×10^2 --0 3 - 10 1.5×10^{4} 4×10^{2} $1 = 10^{2}$ $2 = 10^{2}$ 6×10^2 3×10^{2} 7.5 - 10 2×10^{2} 15 - 102 1 = 104 4×10^{2} 2×10^{2} 5 - 10 1 = 10 Ċ 1 - 10 5 = 102 1×10^2 25-10 2×10^{2} i co l 5 = 10 ABCDEH ABCDEH ABCDEF ABCDEH ABCDEF ABCDEH Toddlers lactose 3.5 - 103 sucrose 3 + 10 - $2.5 + 10^{5}$ 2 + 105 ABCDEH 0.2 ABCDE 0.1 个 ORG 0.0 0.1 LV2 -0.2 -0.3 F -0.4 ιņ. o 0.0 -0.5 0.5 1.0 LV1 & Nerophosphotoline dimetry suffor acetate

MDPI & effect of processing: the coffee case n

Article

sciences

Phenotyping Green and Roasted Beans of Nicaraguan Coffea Arabica Varieties Processed with Different Post-Harvest Practices

Gaia Meoni 1,2,3,+0, Claudio Luchinat 1,2,30, Enrico Gotti ⁴, Alejandro Cadena ⁵ and Leonardo Tenori 1,2,3,+0

1) CULTIVAR CLASSIFICATION BASED ON ¹H-NMR FINGERPRINTING APPROACH

2021

Green

Roasted coffee

💋 Nicaragua (Nueva 💬 Segovia) Р 3 Farms 7 Arabica sp. varieties 4 post-harvest procedures CARAVELA

Tot: 36 coffee batches

maracaturra bourbon (BO)

caturra (CA)

tekesic (TE)

pacamara

GEOGRAPHICAL CHARACTERIZATION OF NUEVA SEGOVIA FARMS CULTIVATING THE SAME VARIETIES

POST-HARVEST FVALUATION OF 3) EFFECTS ON catuai rojo (CR) COFFEE METABOLOMIC PROFILE (MC)

· Each coffee variety seems to react differently to fermentation, drying and roasting.

Overall predictive accuracy: 86%

MAGNETIC RESONANCE CENTER (CERM) @ UNIFI

CIRMMP INFRASTRUCTURE

Thank you for the attenti on